Traditionally in superhydrophobic surfaces history, the focus has frequently settled on the use of complex processing methodologies using nonbiodegradable and costly materials. In light of recent events on lab-on-paper emergence, there are now some efforts for the production of superhydrophobic paper but still with little development and confined to the fabrication of flat devices.
This work gives a new look at the range of possible applications of bioinspired superhydrophobic paper-based substrates, obtained using a straightforward surface modification with poly(hydroxybutyrate). As an end-of-proof of the possibility to create lab-on-chip portable devices, the patterning of superhydrophobic paper with different wettable shapes is shown with low-cost approaches.
Furthermore, we suggest the use of superhydrophobic paper as an extremely low-cost material to design essential nonplanar lab apparatus, including reservoirs for liquid storage and manipulation, funnels, tips for pipettes, or accordion-shaped substrates for liquid transport or mixing. Such devices take the advantage of the self-cleaning and extremely water resistance properties of the surfaces as well as the actions that may be done with paper such as cut, glue, write, fold, warp, or burn.
The obtained substrates showed lower propensity to adsorb proteins than the original paper, kept superhydrophobic character upon ethylene oxide sterilization and are disposable, suggesting that the developing devices https://biodas.org/ could be especially adequate for use in contact with biological and hazardous materials.
Contaminating levels of zinc found in commonly-used labware and buffers affect glycine receptor currents.
Zinc is an allosteric modulator of glycine receptor function, enhancing the effects of glycine at nM to low μM concentrations, and inhibiting its effects at higher concentrations. Because of zinc’s high potency at the glycine receptor, there exists a possibility that effects attributed solely to exogenously-applied glycine in fact contain an undetected contribution of zinc acting as an allosteric modulator.
We found that glycine solutions made up in standard buffers and using deionized distilled water produced effects that could be decreased by the zinc chelator tricine. This phenomenon was observed in three different vials tested and persisted even if vials were extensively washed, suggesting the zinc was probably present in the buffer constituents. In addition, polystyrene, but not glass, pipets bore a contaminant that enhanced glycine receptor function and that could also be antagonized by tricine.
Our findings suggest that without checking for this effect using a chelator such as tricine, one cannot assume that responses elicited by glycine applied alone are not necessarily also partially due to some level of allosteric modulation by zinc.
Labware additives identified to be selective monoamine oxidase-B inhibitors
Plastic labware is used in all processes of modern pharmaceutical research, including compound storage and biological assays. The use of these plastics has created vast increases in productivity and cost savings as experiments moved from glass test tubes and capillary pipettes to plastic microplates and multichannel liquid handlers. One consequence of the use of plastic labware, however, is the potential release of contaminants and their resultant effects on biological assays.
We report herein the identification of biologically active substances released from a commonly used plastic microplate. The active contaminants were identified by gas chromatography-mass spectroscopy as dodecan-1-ol, dodecyl 3-(3-dodecoxy-3-oxopropyl)sulfanylpropanoate, and dodecanoic acid, and they were found to be selective monoamine oxidase-B inhibitors.
3D Printing in the Laboratory: Maximize Time and Funds with Customized and Open-Source Labware
3D printing, also known as additive manufacturing, is the computer-guided process of fabricating physical objects by depositing successive layers of material. It has transformed manufacturing across virtually every industry, bringing about incredible advances in research and medicine. The rapidly growing consumer market now includes convenient and affordable “desktop” 3D printers.
These are being used in the laboratory to create custom 3D-printed equipment, and a growing community of designers are contributing open-source, cost-effective innovations that can be used by both professionals and enthusiasts. User stories from investigators at the National Institutes of Health and the biomedical research community demonstrate the power of 3D printing to save valuable time and funding.
While adoption of 3D printing has been slow in the biosciences to date, the potential is vast. The market predicts that within several years, 3D printers could be commonplace within the home; with so many practical uses for 3D printing, we anticipate that the technology will also play an increasingly important role in the laboratory.
3D-Printed Labware for High-Throughput Immobilization of Enzymes
In continuous flow biocatalysis, chemical transformations can occur under milder, greener, more scalable, and safer conditions than conventional organic synthesis. However, the method typically involves extensive screening to optimize each enzyme’s immobilization on its solid support material. The task of weighing solids for large numbers of experiments poses a bottleneck for screening enzyme immobilization conditions. For example, screening conditions often require multiple replicates exploring different support chemistries, buffer compositions, and temperatures.
Thus, we report 3D-printed labware designed to measure and handle solids in multichannel format and expedite screening of enzyme immobilization conditions. To demonstrate the generality of these advances, alkaline phosphatase, glucose dehydrogenase, and laccase were screened for immobilization efficiency on seven resins. The results illustrate the requirements for optimization of each enzyme’s loading and resin choice for optimal catalytic performance. Here, 3D-printed labware can decrease the requirements for an experimentalist’s time by >95%. The approach to rapid optimization of enzyme immobilization is applicable to any enzyme and many solid support resins. Furthermore, the reported devices deliver precise and accurate aliquots of essentially any granular solid material.
Additive manufactured customizable labware for biotechnological purposes
Yet already developed in the 1980s, the rise of 3D printing technology did not start until the beginning of this millennium as important patents expired, which opened the technology to a whole new group of potential users. One of the first who used this manufacturing tool in biotechnology was Lücking et al. in 2012, demonstrating potential uses 1, 2. This study shows applications of custom-built 3D-printed parts for biotechnological experiments.
It gives an overview about the objects’ computer-aided design (CAD) followed by its manufacturing process and basic studies on the used printing material in terms of biocompatibility and manageability. Using the stereolithographic (SLA) 3D-printing technology, a customizable shake flask lid was developed, which was successfully used to perform a bacterial fed-batch shake flask cultivation. The lid provides Luer connectors and tube adapters, allowing both sampling and feeding without interrupting the process. In addition, the digital blueprint the lid is based on, is designed for a modular use and can be modified to fit specific needs.
All connectors can be changed and substituted in this CAD software-based file. Hence, the lid can be used for other applications, as well. The used printing material was tested for biocompatibility and showed no toxic effects neither on mammalian, nor on bacteria cells. Furthermore an SDS-PAGE-comb was drawn and printed and its usability evaluated to demonstrate the usefulness of 3D printing for everyday labware. The used manufacturing technique for the comb (multi jet printing, MJP) generates highly smooth surfaces, allowing this application.
Immunology analysis, significantly subsequent technology sequencing (NGS) of the immune T-cell receptor β (TCRβ) repertoire, has superior development in a number of fields, together with therapy of varied cancers and autoimmune ailments. This research aimed to establish the TCR repertoires from dry blood spots (DBS), a technique that can assist gathering real-world knowledge for biomarker functions.Finger-prick blood was collected onto a Whatman filter card.
RNA was extracted from DBS of the filter card, and absolutely automated multiplex PCR was carried out to generate a TCRβ chain library for subsequent technology sequencing (NGS) evaluation of distinctive CDR3s (uCDR3).We demonstrated that the dominant clonotypes from the DBS outcomes recapitulated these present in complete blood.
According to the statistical evaluation and laboratory affirmation, 40 of 2-mm punch disks from the filter playing cards had been sufficient to detect the shared prime clones and have robust correlation within the uCDR3 discovery with complete blood. uCDR3 discovery was neither affected by storage temperatures (room temperature versus – 20 °C) nor storage durations (1, 14, and 28 days) when in comparison with complete blood.
About 74-90% of prime 50 uCDR3 clones of complete blood is also detected from DBS. A low price of clonotype sharing, 0.03-1.5%, was discovered amongst completely different people.The DBS-based TCR repertoire profiling methodology is minimally invasive, supplies handy sampling, and incorporates absolutely automatedlibrarypreparation.
The system is delicate to low RNA enter, and the outcomes are extremely correlated with complete blood uCDR3 discovery permitting research scale-up to higher perceive the connection and mutual influences between the immune and ailments.
Fully automated pattern preparation process to measure medication of abuse in plasma by liquid chromatography tandem mass spectrometry
For the evaluation of medication and pharmaceutical compounds in organic matrices, extraction procedures are usually used for LC-MS/MS evaluation usually requiring handbook steps in pattern preparation. In this research, we report a completely automated extraction methodology carried out by a programable liquid handler straight coupled to an LC-MS/MS system for the willpower of 42 elements (illicit medication and/or metabolites) (plus 20 deuterated inner requirements).
The acquisition was carried out in optimistic ionization mode with as much as 15 MRM transitions per compound, every with optimized collision power (MRM spectrum mode) to allow qualitative library searching along with quantitation.
After placing the pattern tube into the system, no additional intervention was obligatory: automatedpreparation used 50 μL of blood or plasma with three μL of extracted pattern injected for evaluation. The methodology was validated according to the necessities of ISO 15189.
The restrict of detection and quantification was 1-5 ng/mL depending on the compound. Stability experiments discovered that historic calibration curve knowledge information may precisely quantify for as much as 1 month with lower than 20% uncertainty.
Comparison to a QuEChERS methodology was made using affected person samples providing a regression correlation R2 = 0.98 between the 2 strategies. This method was efficiently designed to assist parallel pattern preparation and evaluation subsequently considerably increasing pattern throughput and diminished cycle instances. Graphical summary ᅟ.